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Abstract

In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a

novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The

method is an extension of the Gauss-Seidel and Gauss-Jacobimethods with overrelaxation for symmetric convex linear

complementarity problems. Convergent under fairly standard assumptions, the method is implemented in a parallel

framework by using a single instruction multiple data computation paradigm promoted by the Compute Unified Device

Architecture library for graphical processing unit programming. The framework supports the simulation of problems

with more than 1 million bodies in contact. Simulation thus becomes a viable tool for investigating the dynamics of

complex systems such as ground vehicles running on sand, powder composites, and granular material flow.

Keywords: Multibody dynamics, frictional contact simulation, complementarity-based model.
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Introduction

Approximating through numerical simulation the time evolution of a multibody system in the presence of friction

and contact/impact phenomena continues to be a challengingtask. For instance, results reported in [1] indicate that

the most widely used commercial software package for multibody dynamics simulation has significant difficulties in

handling a simple problem such as a collection of balls falling in a box, whenever the number of balls becomes larger

than 50; in fact, the problem becomes practically intractable when the number of bodies becomes larger than 100.

Presented here is an algorithm that can robustly and efficiently approximate the dynamics ofrigid bodies undergoing

frictional contact [2]. Posing challenges of its own, the case ofdeformablefrictional contact is extensively discussed

in [3, 4] and falls outside the scope of this work.

Two approaches are most often considered when simulating the dynamics of a multibody system with frictional

contact. First is the class of so-called penalty methods, where it is assumed that every time two rigid bodies come in

frictional contact, the interaction can be represented by acollection of stiff springs along with damping elements that

act at the interface of the two bodies [5, 6, 7, 8]. Implementing these regularization approaches requires little effort

beyond that usually associated with developing a multibodydynamics simulation code. Furthermore, this methodology

can easily accommodate complex frictional contact mechanisms, as it allows for a large number of “tuning” parameters

that, in general, can be adjusted to control the dynamics of the frictional contact interaction. What has prevented the

widespread use of this solution is the small step-size at which the numerical integration formula, because of stability

limitations, is able to advance the simulation, a drawback related to the stiff spring elements artificially included in

the model. Most of the time, this step-size limitation is counterbalanced by the use of implicit integration formulas,

a proposition that typically comes at a price as it requires the solution of a discretization nonlinear system at each

integration time-step. This in turn leads to a heavy computational burden for scenarios with a large number of active

frictional contact events.

A second approach, and the one pursued in this work, relies onan different mathematical framework capable of

handling applications with hundreds of thousands of frictional contact events. The algorithms in this class draw on

time-stepping procedures that produce weak solutions of the differential variational inequality (DVI) that describes

the time evolution of rigid bodies with collision, contact,and friction. The DVI as a problem formulation was recently

introduced in full generality and classified by differential index [9], though earlier numerical approaches based on DVI
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formulations do exist [10, 11, 12]. Recent work on time-stepping schemes has included both acceleration-force linear

complementarity problem (LCP) approaches [13, 14, 15] and velocity-impulse LCP-based time-stepping methods

[16, 17, 18, 19]. The LCPs, obtained as a result of the introduction of inequalities in time-stepping schemes for DVI,

coupled with a polyhedral approximation of the friction cone, must be solved at each time step in order to determine the

system state configuration as well as the Lagrange multipliers associated with the frictional contact problem [11, 16].

If the simulation entails a large number of contacts and rigid bodies, as is the case of part feeders, packaging machines,

and granular flows, the computational burden of classical LCP solvers can become significant. Indeed, a well-known

class of numerical solutions for LCPs is based onsimplex methods, also known asdirect or pivotingmethods [20];

however, these methods may exhibit exponential worst-casecomplexity [21]. They may be impractical even for

problems involving as little as a few hundred bodies when friction is present [22, 23]. Further complicating the

numerical solution, since the three-dimensional Coulomb friction case leads to a nonlinear complementarity problem

(NCP), the use of a polyhedral approximation to morph the NCPinto an LCP introduces artificial anisotropy, which

affects friction because friction cones become faceted friction pyramids [16, 15, 17]. In fact, this discrete and finite

approximation of friction cones is one of the reasons for thelarge dimension of the problem that needs to be solved in

multibody dynamics with frictional contact.

In order to circumvent the limitations imposed by the use of classical LCP solvers and the limited accuracy as-

sociated with polyhedral approximations of the friction cone, a parallel fixed-point iteration method with projection

on a convex set is proposed, which can directly solve large cone complementarity problems with low computational

overhead. The method is based on a time-stepping formulation that solves at every step a cone constrained optimiza-

tion problem [24]. The time-stepping scheme has been provedto converge in a measure differential inclusion sense

to the solution of the original continuous-time DVI. For theproposed approach, about 80% of the computational ef-

fort in simulating frictional contact dynamics is spent solving the cone complementarity problem (CCP). The goal of

this work is to solve the CCP in parallel by using commodity high-performance computing hardware. Specifically, a

methodology is proposed that hinges on the use of parallel computational resources available on NVIDIA’s graphical

processing unit (GPU) cards, which can currently handle 12,228 live computational threads simultaneously on the

GeForce 8800 series. Tapping into this massively parallel computational resource has been facilitated by NVIDIA’s

sharing of a well-integrated application programming interface supported by the Compute Unified Device Architecture
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(CUDA) library [25].

Formulation of the Multibody Dynamics with Frictional Contact Problem

The equations that govern the time evolution of a multibody system can be expressed in the form (see, for instance,

[26])

q̇ = L(q)v

Mv̇ = fA (t,q,v) ,

(1)

whereq =
[
rT
1 , ǫT

1 , . . . , rT
nb

, ǫT
nb

]T ∈ R
6nb are generalized positions,v =

[
ṙT
1 , ω̄T

1 , . . . , ṙT
nb

, ω̄T
nb

]T ∈ R
6nb are

generalized velocities, andnb represents the number of bodies in the system. The matrixM is the generalized mass

matrix, andfA (t,q,v) represents the vector of generalized applied forces. The convention used here is that any

symbol in bold represents a vector or matrix quantity, and anoverbar represents a vector quantity represented in the

local, body-fixed reference frame associated with a body that is inferred from the context.

The formulation of the equations of motion draws on the so-called absolute, or Cartesian, representation of the

attitude of each rigid body in the system. For each bodyj, its orientation is described by a set of three Euler angles,

ǫj ∈ R
3, following the 3-1-3 local rotation sequence (see, for instance, [26]). The rate at which each body changes

its orientation is captured by the local angular velocityω̄j ∈ R
3. The location of each body is uniquely determined

by a position vectorrj = [xj , yj , zj]
T that specifies where the body-fixed centroidal reference frame is located. The

translational velocity of the body is simplẏrj , where an overdot represents time differentiation. With this set of

generalized coordinates, the mass matrixM remains constant and diagonal between any realigning of a body-fixed

centroidal reference frame, which can potentially be employed to avoid Euler angles singularities. Also note that, since

for each bodyj there is a locally nonsingular matrixB(ǫj) such that̄ωj = B(ǫj)ǫ̇j , the operatorL(q) that relates

the time derivative of the level-zero generalized coordinates to the level-one generalized coordinates is generally not

the identity matrix. Note that no bilateral constraints arepresent in the current formulation. This case is discussed

in [27, 2], and a paper presenting a parallel methodology forthe general case of bilateral and unilateral constraints is

forthcoming.

Two rigid bodies should not penetrate, and, if they are in contact, there should be friction acting at the interface.

5



In order to enforce the nonpenetration constraint, a gap functionΦ(q) ∈ R is assumed to exist and satisfy

Φ(q) =






> 0 if the bodies are separated,

= 0 if the bodies touch each other,

< 0 if the bodies are interpenetrating.

(2)

For such a function, the nonpenetration constraint becomesΦ(q) ≥ 0. An example of such a mapping is the signed

distance function [28], which, when the bodies are smooth and convex, is differentiable at least up to some value of the

interpenetration [29]. For most cases, even simple ones involving the relative position of two spheres, a differentiable

signed distance function cannot be defined for certain configurationsq. The fact thatΦ(q) can be differentiably defined

only on a neighborhood of the setΦ(q) ≥ 0 can be accommodated at the cost of making the analysis substantially

more involved [30]. This approach will not be used here. In addition, for piecewise smooth bodies, the signed distance

function, which is usually the first choice of a gap function,is nonsmooth even when the bodies are not penetrating

each other [31]. For polyhedral bodies, this difficulty can be circumvented by writing the gap function as the maximum

between basic contact configurations gap functions. In three dimensions, such configurations are corner-on-face and

nonparallel edge-on-edge. The nonpenetration constraintcan be handled, in the context of the time-stepping scheme

(6–9), by the appropriate definition of the active setA to include not only active contacts, but also active basic contact

configuration gap functions [31]. In the end, for sufficiently small penetration, we can use, without loss of generality,

a differentiability of geometrical constraint data assumption: that any contact is described by a gap functionΦ(q)

that is twice continuously differentiable. For an overwhelming majority of applications, when one deals with convex

geometries and with suitably small numerical integration step-sizes, this assumption is easily verified.

The friction model used here is the Coulomb model, which leads to frictional conic constraints regarded as an

extension of complementarity models discussed in [16, 17].If the configuration of the systemq is such that a contact

i is active, that is,Φi(q) = 0, then a normal force and a tangential force are going to act oneach of the two bodies at

the contact point. DenotingA andB the two bodies in contact, letni be the normal at the contact pointing toward the

exterior of the first body, that is, bodyA. Let ui andwi be two vectors in the contact plane such thatni,ui,wi ∈ R
3

are mutually orthonormal vectors. Although they typicallydepend onq, this dependency is not explicitly indicated, in

order to keep the notation simple.

The frictional contact force is impressed on the system by means of multiplierŝγi,n ≥ 0, γ̂i,u, andγ̂i,w, which lead
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to the normal component of the forceFi,N = γ̂i,nni and the tangential component of the forceFi,T = γ̂i,uui+γ̂i,wwi.

The Coulomb model consists of the following constraints:

γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0,

µiγ̂i,n ≥
√

γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(
µiγ̂i,n −

√
γ̂2

i,u + γ̂2
i,w

)
= 0,

〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T ||

wherevi,T is the relative tangential velocity at contacti. The magnitude of the friction force depends on the friction

coefficientµi ∈ R
+, which typically has a value between0 and1 for most materials, and is instrumental in linking

the magnitude of the tangential and normal forces through a constitutive type equation1.

The first part of the constraint can be restated as

Fi = Fi,N + Fi,T = γ̂i,nni + γ̂i,uui + γ̂i,wwi ∈ C, (3)

whereC is a cone in three dimensions, whose slope istan−1 µi. Defining by〈 , 〉 the inner product of two vectors,

the constraint〈Fi,T ,vi,T 〉 = −||Fi,T || ||vi,T || requires that the tangential force be opposite to the tangential velocity.

This results in the friction force being dissipative. In fact, an equivalent convenient way of expressing this constraint

is by using the maximum dissipation principle(γ̂i,u, γ̂i,w) = argmin√
bγ2

i,u
+bγ2

i,w
≤µibγi,n

vT
i,T (γ̂i,uui + γ̂i,wwi) [32, 12]. For

this minimization problem, it is relatively straightforward to establish a connection between the first-order necessary

KKT conditions [33] and the Coulomb model above. Effectively, the condition in this equation states that the friction

force is such that, given a tangential velocity and a normal force, the power dissipated is maximized.

The contribution of the frictional contact forces in the equations of motion, Eq. (1), is through a set of generalized

forces associated with each active contact in the model. Based on Newton’s third law, each body experiences a force

of the same magnitude but opposite direction at the point of contact. Therefore, the virtual work associated with the

frictional contact forceFi between bodiesA andB becomesδWi = δrT
i,AFi − δrT

i,BFi. As illustrated in Fig. (1),

ri,A = rj + AAs̄i,j gives the position, expressed in the global inertial reference frame, of the contact pointPi,A on

bodyA, andδri,A = δrA + AAδ ˜̄πAs̄i,A = δrA − AA˜̄si,Aδπ̄A represents a virtual displacement of bodyA, which

1Though the original Coulomb model distinguishes between staticµs and kineticµk friction coefficients, where usually the kinetic coefficient is

slightly lower than its static counterpart, in this work both are considered to have the same valueµ. The difference is not relevant for the discussion;

it suffices to say that to correct this approach would requireone to adjust the friction coefficient adaptively during thesimulation depending on the

slipping speed, so as to express complex nonlinearities inµ as a function of speed.
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Figure 1: Contacti active between two bodiesj, k ∈ {1, 2, . . . , nb}

is due to a virtual translational displacement of the body center of mass,δrA, and a virtual rotationδπ̄A, expressed in

the local bodyA reference frame. Similar quantities are defined in conjunction with bodyB. Note that the operator

˜acting on a vectorh = [h1, h2, h3]
T produces a skew symmetric matrix̃h ≡ H ∈ R

3×3 with H(1, 2) = −h3,

H(1, 3) = h2, andH(2, 3) = −h1. From Eq. (3),

δWi = (δrT
A + δπ̄T

A
˜̄si,AAT

A)(γ̂i,nni + γ̂i,uui + γ̂i,wwi)

− (δrT
B + δπ̄B

T ˜̄si,BAT
B)(γ̂i,nni + γ̂i,uui + γ̂i,wwi)

= δqT D∗
i (γ̂i,nni + γ̂i,uui + γ̂i,wwi)

= δqT (γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w),

where, withI3 the3 × 3 identity matrix, the projection matrixD∗
i ∈ R

6nb×3 is defined for contacti as

D∗T
i =

[
0 . . . I3 (˜̄si,AAT

A)T 0 . . . 0 −I3 −(˜̄si,BAT
B)T . . . 0

]
,

and Di,n ≡ D∗
i ni, Di,u ≡ D∗

i ui, andDi,w ≡ D∗
i wi.

These three vectors can be grouped in a matrixDi = [Di,n, Di,u, Di,w] ∈ R
6nb×3. DenotingAi,p = [ni,ui,wi]

theR
3×3 matrix of the local coordinates of theith contact, one can expressDi also as

DT
i =

[
0 . . . −AT

i,p AT
i,pAA˜̄si,A 0 . . . 0 AT

i,p −AT
i,pAB˜̄si,B . . . 0

]
. (4)
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Note that the velocity at the point of contact can also be expressed in terms ofDi,u and Di,w. To this end, the

velocity in local contact coordinates can be expressed asvT
i,T = vT Di, and therefore the power dissipated can be

equivalently expressed asvT
i,T (γ̂i,uui + γ̂i,wwi) = vT Di (γ̂i,uui + γ̂i,wwi) = vT (γ̂i,u Di,u + γ̂i,w Di,w).

When one revisits Eq. (1) and assumes a set ofp active constraints at timet, a more specific expression can

be provided for the differential equations governing the time evolution of the multibody system by singling out the

contribution of the frictional contact force. Drawing on the Coulomb model discussed, the following differential

variational inequality is associated with the time evolution of the multibody system [34]:

q̇ = L(q)v

Mv̇ = f (t,q,v) +
p∑

i=1

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w)

1 ≤ i ≤ p : γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0, and

(γ̂i,u, γ̂i,w) = argmin
µibγi,n≥

√
(bγi,u)2+(bγi,w)2

vT (γ̂i,u Di,u + γ̂i,w Di,w) .

(5)

Here, and in the rest of this work we use the symbolu ⊥ v to denote the fact thatuT v = 0. The Coulomb model

used in this work is the predominant model used in the engineering literature to describe dry friction. Unfortunately,

the model may be inconsistent: there exist configurations for which the model does not have a solution [13, 19].

This situation has led to the need to explore weaker formulations where the forces are measures and Newton’s law is

satisfied in a measure differential inclusion sense [19]. Ithas been shown that solutions in that sense do exist and can

be found by time-stepping schemes [35]. Note that, for the type of application targeted — pebble-bed nuclear reactor

simulation, granular flow dynamics, etc., — all collisions that appear during the simulation can be assumed of the

inelastic type.
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Proposed Solution

Starting from a time-stept(l) with positionq(l) and velocityv(l), the solution is found at the new time-stept(l+1) =

t(l) + h as the solution of the following optimization problem with equilibrium constraints:

M(v(l+1) − vl) = hf(t(l),q(l),v(l))

+
∑

i∈A(q(l),δ)

(γi,n Di,n + γi,u Di,u + γi,w Di,w) , (6)

i ∈ A(q(l), δ) : 0 ≤ 1

h
Φi(q

(l)) + DT
i,nv(l+1) ⊥ γi

n ≥ 0, and (7)

(γi,u, γi,w) = argmin
µiγi,n≥

√
γ2

i,u
+γ2

i,w

vT (γi,u Di,u + γi,w Di,w) , (8)

q(l+1) = q(l) + hL(q(l))v(l+1). (9)

Here, for a conveniently chosen small value ofδ > 0,

A(q, δ) = {i | i ∈ {1, 2, . . . , p} , Φi(q) ≤ δ } ,

γs represents the constraint impulse of a contact constraint,that is,γs = hγ̂s, for s = n, u, w. The 1
h
Φi(q

(l)) term

achieves constraint stabilization; its effect is discussed in [30]. As the step sizeh → 0, the scheme converges to

the solution of a measure differential inclusion [24]. Numerical solutions for the case when the nonlinear frictional

contact constraint is approximated by a piecewise linear cone can be found by Lemke’s algorithm [17]. Nonetheless,

as the number of constraints in the problem increases, the computational cost of Lemke’s method increases far faster

than linearly with the size of the problem [22]. Alternatively, the problem is cast as a monotone optimization problem

by introducing a relaxation over the complementarity constraints; that is, the time-stepping scheme is modified by

replacing Eq. (7) with

i ∈ A(q(l), δ) : 0 ≤ 1
h
Φi(q

(l)) + DT
i,nv(l+1)

−µi

√
(vT Di,u)2 + (vT Di,w)2 ⊥ γi

n ≥ 0 .

(10)

As h → 0, the solution of the modified time-stepping scheme will approach the solution of the same measure dif-

ferential inclusion as the original scheme [24]. It can be immediately verified that, for one step, the solution of the

scheme using (10) approaches the one of the scheme using (7) whenµiγi,n

√
(vT Di,u)2 + (vT Di,w)2 ≪ 1 [22].

This assumption is satisfied both in the regime in which pebble-bed nuclear reactors operate [36] and for granular flow

applications, two classes of applications targeted by the proposed approach. Generally, the above assumption will be
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satisfied whenever there is little friction between the two bodies in contact (lowµ) or when the relative velocity at the

contact point is small.

But the sequence produced by the scheme using the relaxation(10) approaches the one produced by the scheme

using (7) in far more general circumstances. The first and thesecond terms are common to both (7) and (10) and

originate in the linearization of the nonpenetration constraint. The first term,Φi

h
is the one that achieves constraint

stabilization [30]. The relaxation term isµi

√
(vT Di,u)2 + (vT Di,w)2. But, interestingly, the combination between

this term andΦi

h
has the effect of creating a contact boundary layer between the bodies, of width equal toh||vi,T ||,

which compensates for the relaxation term. Provided that the time step is small compared to the characteristic time

scale of the tangential velocity, the dynamics of the relaxed scheme will approach the dynamics of the original scheme,

the one using (7). A related observation is at the heart of theotherwise technical convergence result in [24].

The KKT optimality conditions for the equilibrium constraint in Eq. (8) state that, for anyi ∈ A(q(l), δ), there

exists a Lagrange multiplierλi such that

λiγi,u = −vT Di,u , λiγi,w = −vT Di,w,

λi ≥ 0 ⊥ µiγi,n −
√

γ2
i,u + γ2

i,w ≥ 0.

(11)

If for i ∈ A(q(l), δ), cT
i ≡ [γi,n, γi,u, γi,w], andgT

i ≡
[

1
h
Φi(q

(l)) + DT
i,nv(l+1), DT

i,uv
(l+1), DT

i,wv(l+1)
]
, then

drawing on Eqs. (10) and (11), one can show thatgT
i ci = 0, and thusgi ⊥ ci. If one defines the cones

Λi =
{
g = [g1, g2, g3]

T ∈ R
3 | g1 ≥ µi

√
g2
2 + g2

3

}
,

Ci =
{
c = [c1, c2, c3]

T ∈ R
3 | µic1 ≥

√
c2
2 + c2

3

}
,

thenΛi is the negative polar cone ofCi; that is,g ∈ Λi andc ∈ Ci implies thatgT c ≥ 0. Here,C◦, the polar cone

of a given coneC ⊂ R
m, is defined asC◦ = {x ∈ R

m| 〈x,y〉 ≤ 0, ∀y ∈ C}. Then based on Eqs. (8) and (10) the

following set of cone complementarity constraints holds:

−gi ∈ C◦
i ⊥ ci ∈ Ci, ∀i ∈ A(q(l), δ). (12)

In what follows, the focus shifts back to reformulating the optimization problem with equilibrium constraints

of Eqs. (6) through (9) to account for the above cone complementarity constraints. To this end, the notationQ ≡

Mv(l) +hf(t(l),q(l),v(l)) is introduced. Then, Eq. (6) is reformulated asMv(l+1) = Q+Dγ, where withnA being

the cardinality ofA(q(l), δ), D ≡ [D1 . . . DnA
] ∈ R

6nb×3nA , γ = [γT
1 . . . γT

nA
]T ∈ R

3nA , and, fori ∈ A(q(l), δ),
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Di ≡ [Di,n Di,u Di,w] ∈ R
6nb×3 andγT

i ≡ [γi,n γi,u γi,w]. Next, the vectorb ∈ R
3nA is defined asbT ≡

[ 1
h
Φ1(q

(l)) 0 0 . . . 1
h
ΦnA

(q(l)) 0 0]. Here, for an arbitrary vectorh ∈ R
3nA , the notationhi, 1 ≤ i ≤ nA, is used

to represent the entries in rows3(i − 1) + 1, 3(i − 1) + 2, 3i, that is, the entries associated with contacti. Finally,

with the notationN ≡ DTM−1D, andd ≡ b + DT M−1Q, the configuration of the multibody system att(l+1) is

obtained as the solution of the following:

−
(
Nγ(l+1) + d

)

i
∈ C◦

i ⊥ γi
(l+1) ∈ Ci , 1 ≤ i ≤ nA, (13)

Mv(l+1) = Q + Dγ, (14)

q(l+1) = q(l) + hL(q(l))v(l+1). (15)

The frictional contact forcesγ(l+1) are obtained by solving the cone complementarity problem inEqs. (13) and (14),

where, at each iteration, the velocity is evaluated asv(l+1) = M−1
(
Q + Dγ(l+1)

)
. The attitude of each body in the

system is obtained by using Eq. (15). Note thatN is positive semidefinite, whileM is diagonal, constant, and positive

definite. Equation (13) in fact represents the optimality condition of the following cone complementarity problem

(CCP):

min f(γ) =
1

2
γTNγ + dT γ s.t. γi ∈ Ci , ∀ 1 ≤ i ≤ nA,

whose solution is found by using an iterative algorithm that, starting with an arbitrarily chosenγ(0), computes the

iterationr + 1, r ≥ 0,

γr+1
i = ρ ΠCi

[
γr

i − ωηi (Nγ + d)i +
∑

m∈D(i,r) K
r
i,m

(
γr+1

m − γr
m

)]

+ (1 − ρ) γr
i ,

(16)

whereηi will be defined in Algorithm 1 below,0 < ρ ≤ 1, andω > 0 are two parameters, and, for eachr, Kr
i,m

is a coefficient matrix that indicates how the frictional contact force associated with contactm gets reflected in the

computation of the frictional contact force associated with contacti. HereD(i, r) represents the set of contacts

considered when updating the frictional contact forces associated with contacti. Note that for a Gauss-Jacobi-type

iterationD(i, r) = ∅ and for a Gauss-Seidel type iterationD(i, r) = {1, 2, . . . , i − 1}, but other update strategies,

which might depend on the iteration indexr, can and will be pursued. Finally, the operatorΠCi
is the conei projection

operator; see, for instance, [27].

The iterative scheme in Eq. (16) was proved to converge undermild assumptions that can be met by a suitable

choice of relaxation parameterω [2]. Therein, it was also pointed out that a Gauss-Seidel update sequence in the
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iterative process led to a robust algorithm. Although convenient for the convergence analysis, Eq. (16) is not the form

that is considered for software implementation. Rather, aninner loop iteration algorithm, that also updates the speed

v(l+1), is provided in the following pseudocode, Algorithm 1:

Algorithm 1: Inner Iteration Loop

1. For1 ≤ i ≤ nA, evaluateηi = 3/Trace(DT
i M−1 Di).

2. If warm start with initial guessγ∗, then setγ0 = γ∗, otherwiseγ0 = 0.

3. Initialize speeds:v(l+1) =
∑nA

i=1 M−1 Diγ
0 + M−1Q.

4. Fori = 1, . . . nA, perform the updates:

γprelim
i = γr

i − ωηi

(
DT

i v(l+1) + bi

)
;

γr+1
i = ρ ΠCi

(
γprelim

i

)
+ (1 − ρ)γr

i ;

∆γr+1
i = γr+1

i − γr
i ;

v(l+1) := v(l+1) + M−1 Di∆γr+1
i .

5. Repeat step 4 by looping on the list of contacts in reverse order, if symmetric updates are desired.

6. r := r + 1. Repeat from 4 until convergence, or untilr > rmax.

The stopping criterion is based on the value of the velocity update. The overall algorithm that provides an approx-

imation to the solution of Eqs. (13) through (15) relies on Algorithm 1 and requires the following steps, Algorithm

2:

Algorithm 2: Outer, Time-Stepping, Loop

1. Sett = 0, step counterl = 0, provide initial values forq(l) andv(l).

2. Perform collision detection between bodies, obtainingnA possible contact points within a distanceδ. For each

contacti, computeDi,n, Di,u, Di,w, and residualΦi(q), which also providesbi.
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3. For each body, compute forcesf(t(l),q(l),v(l)) and thenQ.

4. Use Algorithm 1 to solve the cone complementarity problemand obtain unknown impulseγ and velocityv(l+1).

5. Update positions usingq(l+1) = q(l) + hL(q(l))v(l+1).

6. Incrementt := t + h, l := l + 1, and repeat from step 2 untilt > tend

Note that choosing a proper valueδ for the collision envelope is not trivial. On the one hand, ifa very small or zero

value is used, contacts will enter the CCP solver only when itis too late, and some amount of interpenetration will

be unavoidable, which in turn adversely impacts the stability of the method. On the other hand, if too large a value is

used, the collision detection algorithm will return too many potential contacts that waste computational resources and

could occasionally create trouble with convex shapes, which decreases the efficiency of the method. Ifv is known, a

simple yet efficient heuristic is to chooseδ as a rough approximation of the maximum distance that can be traveled

within a step-size by an arbitrary point of a moving body.

Parallel Implementation Details

The parallel implementation for the multibody dynamics frictional contact problem dependends heavily on the under-

lying hardware used to run the simulation. Specifically, thealgorithm proposed is well suited for running on parallel

platforms that support the single instruction multiple data (SIMD) computational paradigm, which is ideally suited

for handling problems with contacts in excess of hundreds ofthousand. NVIDIA’s GeForce 80 family of GPUs has

been adopted as the implementation platform. Priced at $460per card, the GeForce 8800 GTX has been clocked at

320 GFlop, about seven times faster than an Intel Core 2 Duo running at 3 GHz, and this gap is bound to grow in the

immediate future2. A description of the hardware behind the GeForce 8800 GTX card used is beyond the scope of this

paper. It suffices to indicate that for the frictional contact problem discussed here, contacts are processed by each of

the 16 streaming multiprocessors in warps of 16 contacts perstreaming multiprocessor. As far as memory allocation

is concerned, each streaming multiprocessor has 8,192 registers that each can hold a float or an integer, and each has

2Note that through a new product line called Larrabee, Intel is integrating the GPU and CPU on the same chip and expected to support in early

2010 the same parallel computation model promoted by NVIDIA, only with larger shared memory and L1 cache.
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16 KB of shared-memory that can be shared by all live threads associated with the respective streaming multiproces-

sor. In this context, the maximum number of live threads is at768 much larger than the batch of 16 threads that are

executed at each time, since some of threads are active but parked while waiting for global memory fetches, a strategy

that hides the memory latency and improves the overall efficiency. The recommended strategy for GPU computing on

GeForce 8800 GTX is to try to maximize the number of parallel threads active at any given time, which in an ideal

situation would be at 12,288 threads. Since register and shared-memory resources are fixed, however, the more threads

active, the less the resources per thread. In the end, an optimal point is reached where, while the number of threads per

streaming processor is still large, the memory allocated toeach thread is enough to allow it to run a batch of commands

associated with Algorithm 1. In the current parallel implementation, Algorithm 1 runs with 6,144 active threads at any

given time; in other words, the GPU is working with 6,144 contacts at each time. The number of active threads can be

further increased but at the price of an increased number of global memory accesses, where “global” here represents

the 768 MB GDDR3 on-chip GPU memory. While global memory fetches are still fast because of low latency and

high memory bandwidth (86.4 GB/sec), they are still two orders of magnitude slower than register or shared-memory

access and should be avoided whenever possible.

In the context of this work, the most relevant consequence ofusing a parallel execution approach is that this

execution model can lead to a random velocity update sequence. In asequentialexecution mode, the loop over the

active contact set in Algorithm 1 is carried out in an orderlyfashion. If symmetric updates are desired, then the

order is reversed, but it is still predefined and deterministic. When implementing aparallel version of Algorithm 1,

two approaches can be followed. The first falls back on a Gauss-Jacobi approach and, referring back to Eq. (16),

corresponds toD(i, r) = ∅. Numerical experiments suggest that the convergence rate decreases and, for certain

models, leads to a large number of iterationsr or even lack of convergence. The second approach investigated in

this work allows for a random update sequence, to the extent that in generalD(i, r) 6= D(i, p), for r 6= p. In this

context, for the Gauss-Seidel there is no dependency in Algorithm 1 ofD(i, r) = {1, 2, . . . , i − 1} on r, and in fact

each iteration follows the same update sequence. Enforcinga similar update sequence in a parallel execution scenario

would unacceptably compromise performance, as this has to rely on a system of semaphores similar to themutex

support in the POSIX standard threading library API, which in fact is not supported by CUDA library support [25].

Note that there is a remote chance that during some iterationr a certain update produced by contacti would fail
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altogether because of a race condition and lack ofmutex-type support. This situation is not expected to impact the

convergence of the algorithm, however, particularly for large frictional contact problems with hundreds of thousands

of contacts, where the probability of 2 out of 256 contacts tobe associated with the same body and try to update

its velocity at the same time is very small, but not zero. Notealso that the 256 value corresponds on GeForce 8800

GTX to the number of streaming multiprocessors (16), each processing simultaneously a warp of 16 threads (frictional

contacts).

Data Structures

At each simulation step, the CPU, that is, the “host” , feeds data into the GPU memory, launches one or morekernels

(functions to be performed simultaneously on many parallelGPU threads), and gathers the results of the computations

by copying select portions of the GPU memory back into the host RAM. Special care should be paid to minimize the

memory overhead caused by repeated transfers of large data structures. Moreover, data structures should be organized

to exploit fast GPU coalesced memory access to fetch data forall parallel threads in a warp. Provided that bytes are

contiguous and that thekth thread accesses thekth element in the data structure, up to 512 bytes can be fetched in one

operation by a warp of threads. Failing to perform coalescedmemory access may slow the kernel significantly. For

the algorithm developed, the data structure for the contacts has been mapped into columns of four floats, as shown in

Fig. 2.

There is no need to store the entireDi matrix for theith contact because it has zero entries for most of its part,

except for the two 12x3 blocks corresponding to the coordinates of the two bodies in contact. Hence, the product

DT
i v(l+1) in the fourth step of Algorithm 1 can be performed as

DT
i v(l+1) = DT

i,vA
ṙA + DT

i,ωA
ωA + DT

i,vB
ṙB + DT

i,ωB
ωB (17)
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with the adoption of the following 3x3 matrices

DT
i,vA

= −AT
i,p (18a)

DT
i,ωA

= AT
i,pAA˜̄si,A (18b)

DT
i,vB

= AT
i,p (18c)

DT
i,ωB

= −AT
i,pAB˜̄si,B (18d)

(18e)

Similarly, the updatev(l+1) := v(l+1)+M−1 Di∆γr+1
i can be computed explicitly as the following sparse update

to the speeds of two bodies only

ṙ
(l+1)
A

:= ṙ
(l)
A

− m−1
A Di,vA

∆γr+1
i (19a)

ωA
(l+1) := ωA

(l) + J−1
A Di,ωA

∆γr+1
i (19b)

ṙ
(l+1)
B

:= ṙ
(l)
B

+ m−1
B Di,vB

∆γr+1
i (19c)

ωB
(l+1) := ωB

(l) − J−1
B Di,ωB

∆γr+1
i (19d)

SinceDT
i,vA

= −DT
i,vB

, there is no need to store both matrices, so in each contact data structure only a matrixDT
i,vAB

is stored, which is then used with opposite signs for each of the two bodies.

Figure 3 shows that for each body there is a data structure containing the state (speed and position), the mass

moments of inertia and mass values, and the external appliedforceFj and torqueCj . Forces and torques, if any, are

used to compute the third step of Algorithm 1. Note that to speed the iteration, it is better to store the inverse of the

mass and inertias rather than their original values, because the operationM−1 Di∆γr+1
i must be performed many

times. Each contact will reference its two touching bodies through the two pointersBA andBB, in the fourth and

seventh rows of the contact data structure.

Numerical experiments show that for high memory throughput, it is better to pad the data into a four-float width

structure even at the cost of wasting memory space when several entries end up not being used. Also, the variables
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Figure 2: Grid of data structures for frictional contacs, inGPU memory.

in the data structures are organized in a way that minimizes the number of fetch and store operations. This approach

maximizes the arithmetic intensity of the kernel code, as recommended by the CUDA development guidelines.

Another software design decision that improved the overallperformance regarded the delegation of contact pre-

processing step to the GPU. Specifically, instead of computing the data structures of the contacts on the host, only the

contact normals and contact points were copied into the GPU memory. Then, a GPU kernel computedDT
i,vAB

, DT
i,ωA

,

DT
i,ωB

, ηi, bi,n, as shown in Figure 4. This strategy leads to faster code not only because the preprocessing kernel

runs in parallel on the GPU, but also because it avoids the memory overhead that would happen if copying the contact

structures from host to GPU. Note thatbi,v andbi,w are quickly evaluated as zero values.

We note that data structures for both bodies and contacts arearranged in thread blocks and that thread blocks are

arranged in thread grids.

The Parallel Algorithm

The pseudocode in Algorithm 3 outlines how Algorithm 1 and Algorithm 2 can be combined and turned into a sequence

of computational phases, for the most part executed as parallel kernels on the GPU. In terms of resource allocation, the

computation kernels followed a one-thread-per-body, or one-thread-per-contact, philosophy, depending on the phase

of the algorithm.
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Figure 4: Contact data structure, before and after the preprocessing kernel.
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Algorithm 3: Complete Time Stepping, when GPU is Available.

1. (Host, serial) Perform collision detection between bodies, obtainingnA possible contact points within a distance

δ, as contact positionssi,A, si,B on the two touching surfaces, and normalsni. If warm start is used, then fetch

last reactions in contact pointγ∗
i (obtained in previous frame, if the contact is persistent) and setγi = γ∗

i ,

otherwiseγi = 0.

2. (Host, serial) Copy contact and body data structures from host memory to GPU memory.

3. (GPU, body-parallel) Force kernel. For each body, compute forcesf(t(l),q(l),v(l)), if any. Store these forces

and torques intoFj andCj . For example, apply the gravitational and gyroscopic forces.

4. (GPU, contact-parallel) Contact preprocessing kernel. For each contact, given contact normal and position,

compute in-place the matricesDT
i,vAB

, DT
i,ωA

andDT
i,ωB

, then computeηi and the contact residualbi,n =

1
h
Φi(q). Setbi,u andbi,w as zero.

5. (GPU, body-parallel) CCP force kernel. For each bodyj, initialize body speeds:̇r(l+1)
j = h m−1

j Fj and

ω
(l+1)
j = h J−1

j Cj .

6. (GPU, contact-parallel) CCP initialization kernel. For each contacti, update initial speeds of bodiesA and

B using equations 19, with the initial values ofγi. This can be skipped if no warm starting. Project to friction

cones when necessary.

7. (GPU, contact-parallel) CCP iteration kernel. For each contacti, doγprelim
i = γr

i − ωηi

(
DT

i v(l+1) + bi

)
.

Note thatDT
i v(l+1) must be done with sparse data, using formula 18. Also doγr+1

i = ρ ΠCi

(
γprelim

i

)
+

(1 − ρ)γr
i , by projecting multipliers onto theith friction cone. After computing∆γr+1

i = γr+1
i − γr

i , update

the speeds of the two connected bodiesA andB as in formulas 19.

8. Repeat the previous kernel until convergence or until number of CCP steps reachedr > rmax.

9. (GPU, body-parallel) Time integration kernel. For eachj body, perform time integration asq(l+1)
j = q

(l)
j +

hL(q
(l)
j )v

(l+1)
j

10. (Host, serial) Copy body data structures from GPU memory to host memory. Copy contact multipliers from

GPU memory to host memory.

20



 

Figure 5: Frame from the simulation of a brick wall. Frictional contact is present between the bricks in the wall and

between the bricks and ground.

Numerical Results

A set of two numerical experiments was carried out with a benchmark problem to assess the performance of the

frictional contact method discussed when executed in a sequential computational framework, and to compare the

sequential to the parallel solution approach proposed in the paper. For each numerical experiment three scenarios

were considered, differentiated by the number of brick elements: 1000, 2000, and 8000 bricks, respectively. Initial

conditions were such that the wall slowly collapsed. Figure5 presents a snapshot of the dynamics of the process. The

wall in the picture has a small number of bricks yet qualitatively captures the essence of the dynamics for the larger

models considered here. The friction coefficient between bricks, and between bricks and ground, was set to 0.6.

The simulation was carried out with a numerical integrationstep-sizeh = 0.01s, which is three orders of magnitude

larger than typically required by the DEM method in [36]. Absolute timing results, since they depend on issues such as

cache management that can vastly change with different compilers and optimization levels, are perhaps less relevant.

With respect to the sequential simulation results, the scaling of the algorithm with the number of bodies is relevant.
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Bricks Sequential GPU Coprocessing

Version Version

1000 43 6

2000 87 10

8000 319 42

Table 1: Average simulation times (in s) required to captureone second of the dynamics of the falling wall.

These and other results obtained for large-scale simulation of models with frictional contact suggest that the algorithm

discussed here displays linear complexity [2]. In other words, the simulation time increases linearly with the number

of bodies in the model. Comparing the sequential and parallel simulation results, one can see a speedup of a factor of 7

when relying on the GPU in coprocessor mode. In spite of usingthe NVIDIA GTX8800 GPU model with 128 parallel

threads, the speedup is limited to 7x because the collision detection draws on an open source package that does not yet

leverage GPU parallelism [37].

Conclusions

The paper proposes a theoretically rigorous approach to simulating multibody dynamics problems with frictional

contact. The algorithm proposed is backed by convergence results for measure differential inclusions [24] and by a

rigorous convergence analysis [2]. The methodology leverages commodity high-performance parallel computing on

the GPU. Preliminary results obtained with the proposed parallel algorithm demonstrate that for very large problems

the computational bottleneck associated with the sequential algorithm — that is, the solution of the cone complemen-

tarity problem — has been eliminated. The computation is nowdominated by the collision detection stage, which at

this time runs sequentially. Four issues remain to be addressed. First, a rigorous convergence analysis for the case of

random velocity updates is needed. Although preliminary results show that this update strategy works in conjunction

with large frictional contact models, it is important to understand and possibly address some of the limitations associ-

ated with this approach. Second, the methodology should be expanded to include the case of bilateral and unilateral

constraints present in a multitude of mechanical system models. It is expected that the latter will positively impact

the RATTLE and SHAKE algorithms in molecular dynamics simulation. Third, the cone complementarity problem
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approach needs to be extended to deformable multibody dynamics problems. Fourth, a parallel collision detection

engine would allow for an entirely parallel approach to multibody dynamics with frictional contact that, given the re-

cent advances in commodity high-performance parallel computing hardware, opens up new fields of simulation-based

engineering in materials science, pharmaceutical industry, granular flow dynamics. The first three open issues will

be addressed in future work; the fourth one is essentially a challenging computer science problem that remains to be

addressed by that community.
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